Computer Science > Graphics
[Submitted on 26 Jan 2024]
Title:Estimating Cloth Elasticity Parameters From Homogenized Yarn-Level Models
View PDF HTML (experimental)Abstract:Virtual garment simulation has become increasingly important with applications in garment design and virtual try-on. However, reproducing garments faithfully remains a cumbersome process. We propose an end-to-end method for estimating parameters of shell material models corresponding to real fabrics with minimal priors. Our method determines yarn model properties from information directly obtained from real fabrics, unlike methods that require expensive specialized capture systems. We use an extended homogenization method to match yarn-level and shell-level hyperelastic energies with respect to a range of surface deformations represented by the first and second fundamental forms, including bending along the diagonal to warp and weft directions. We optimize the parameters of a shell deformation model involving uncoupled bending and membrane energies. This allows the simulated model to exhibit nonlinearity and anisotropy seen in real cloth. Finally, we validate our results with quantitative and visual comparisons against real world fabrics through stretch tests and drape experiments. Our homogenized shell models not only capture the characteristics of underlying yarn patterns, but also exhibit distinct behaviors for different yarn materials.
Submission history
From: Joy Xiaoji Zhang [view email][v1] Fri, 26 Jan 2024 19:22:33 UTC (32,884 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.