Computer Science > Software Engineering
[Submitted on 3 Jan 2024]
Title:CodeFuse-Query: A Data-Centric Static Code Analysis System for Large-Scale Organizations
View PDF HTML (experimental)Abstract:In the domain of large-scale software development, the demands for dynamic and multifaceted static code analysis exceed the capabilities of traditional tools. To bridge this gap, we present CodeFuse-Query, a system that redefines static code analysis through the fusion of Domain Optimized System Design and Logic Oriented Computation Design.
CodeFuse-Query reimagines code analysis as a data computation task, support scanning over 10 billion lines of code daily and more than 300 different tasks. It optimizes resource utilization, prioritizes data reusability, applies incremental code extraction, and introduces tasks types specially for Code Change, underscoring its domain-optimized design. The system's logic-oriented facet employs Datalog, utilizing a unique two-tiered schema, COREF, to convert source code into data facts. Through Godel, a distinctive language, CodeFuse-Query enables formulation of complex tasks as logical expressions, harnessing Datalog's declarative prowess.
This paper provides empirical evidence of CodeFuse-Query's transformative approach, demonstrating its robustness, scalability, and efficiency. We also highlight its real-world impact and diverse applications, emphasizing its potential to reshape the landscape of static code analysis in the context of large-scale software this http URL, in the spirit of collaboration and advancing the field, our project is open-sourced and the repository is available for public access
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.