Computer Science > Software Engineering
[Submitted on 29 Dec 2023]
Title:The Right Prompts for the Job: Repair Code-Review Defects with Large Language Model
View PDF HTML (experimental)Abstract:Automatic program repair (APR) techniques have the potential to reduce manual efforts in uncovering and repairing program defects during the code review (CR) process. However, the limited accuracy and considerable time costs associated with existing APR approaches hinder their adoption in industrial practice. One key factor is the under-utilization of review comments, which provide valuable insights into defects and potential fixes. Recent advancements in Large Language Models (LLMs) have enhanced their ability to comprehend natural and programming languages, enabling them to generate patches based on review comments. This paper conducts a comprehensive investigation into the effective utilization of LLMs for repairing CR defects. In this study, various prompts are designed and compared across mainstream LLMs using two distinct datasets from human reviewers and automated checkers. Experimental results demonstrate a remarkable repair rate of 72.97% with the best prompt, highlighting a substantial improvement in the effectiveness and practicality of automatic repair techniques.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.