Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Dec 2023]
Title:Generating and Reweighting Dense Contrastive Patterns for Unsupervised Anomaly Detection
View PDF HTML (experimental)Abstract:Recent unsupervised anomaly detection methods often rely on feature extractors pretrained with auxiliary datasets or on well-crafted anomaly-simulated samples. However, this might limit their adaptability to an increasing set of anomaly detection tasks due to the priors in the selection of auxiliary datasets or the strategy of anomaly simulation. To tackle this challenge, we first introduce a prior-less anomaly generation paradigm and subsequently develop an innovative unsupervised anomaly detection framework named GRAD, grounded in this paradigm. GRAD comprises three essential components: (1) a diffusion model (PatchDiff) to generate contrastive patterns by preserving the local structures while disregarding the global structures present in normal images, (2) a self-supervised reweighting mechanism to handle the challenge of long-tailed and unlabeled contrastive patterns generated by PatchDiff, and (3) a lightweight patch-level detector to efficiently distinguish the normal patterns and reweighted contrastive patterns. The generation results of PatchDiff effectively expose various types of anomaly patterns, e.g. structural and logical anomaly patterns. In addition, extensive experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation and demonstrate that GRAD achieves competitive anomaly detection accuracy and superior inference speed.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.