Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Dec 2023 (v1), last revised 16 Jul 2024 (this version, v2)]
Title:Rethinking LiDAR Domain Generalization: Single Source as Multiple Density Domains
View PDF HTML (experimental)Abstract:In the realm of LiDAR-based perception, significant strides have been made, yet domain generalization remains a substantial challenge. The performance often deteriorates when models are applied to unfamiliar datasets with different LiDAR sensors or deployed in new environments, primarily due to variations in point cloud density distributions. To tackle this challenge, we propose a Density Discriminative Feature Embedding (DDFE) module, capitalizing on the observation that a single source LiDAR point cloud encompasses a spectrum of densities. The DDFE module is meticulously designed to extract density-specific features within a single source domain, facilitating the recognition of objects sharing similar density characteristics across different LiDAR sensors. In addition, we introduce a simple yet effective density augmentation technique aimed at expanding the spectrum of density in source data, thereby enhancing the capabilities of the DDFE. Our DDFE stands out as a versatile and lightweight domain generalization module. It can be seamlessly integrated into various 3D backbone networks, where it has demonstrated superior performance over current state-of-the-art domain generalization methods. Code is available at this https URL.
Submission history
From: Jaeyeul Kim [view email][v1] Tue, 19 Dec 2023 12:21:09 UTC (10,139 KB)
[v2] Tue, 16 Jul 2024 11:24:01 UTC (7,480 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.