Computer Science > Machine Learning
[Submitted on 9 Dec 2023]
Title:Reinforcement Neighborhood Selection for Unsupervised Graph Anomaly Detection
View PDF HTML (experimental)Abstract:Unsupervised graph anomaly detection is crucial for various practical applications as it aims to identify anomalies in a graph that exhibit rare patterns deviating significantly from the majority of nodes. Recent advancements have utilized Graph Neural Networks (GNNs) to learn high-quality node representations for anomaly detection by aggregating information from neighborhoods. However, the presence of anomalies may render the observed neighborhood unreliable and result in misleading information aggregation for node representation learning. Selecting the proper neighborhood is critical for graph anomaly detection but also challenging due to the absence of anomaly-oriented guidance and the interdependence with representation learning. To address these issues, we utilize the advantages of reinforcement learning in adaptively learning in complex environments and propose a novel method that incorporates Reinforcement neighborhood selection for unsupervised graph ANomaly Detection (RAND). RAND begins by enriching the candidate neighbor pool of the given central node with multiple types of indirect neighbors. Next, RAND designs a tailored reinforcement anomaly evaluation module to assess the reliability and reward of considering the given neighbor. Finally, RAND selects the most reliable subset of neighbors based on these rewards and introduces an anomaly-aware aggregator to amplify messages from reliable neighbors while diminishing messages from unreliable ones. Extensive experiments on both three synthetic and two real-world datasets demonstrate that RAND outperforms the state-of-the-art methods.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.