Computer Science > Computer Vision and Pattern Recognition
[Submitted on 4 Dec 2023]
Title:A Reliable Representation with Bidirectional Transition Model for Visual Reinforcement Learning Generalization
View PDFAbstract:Visual reinforcement learning has proven effective in solving control tasks with high-dimensional observations. However, extracting reliable and generalizable representations from vision-based observations remains a central challenge. Inspired by the human thought process, when the representation extracted from the observation can predict the future and trace history, the representation is reliable and accurate in comprehending the environment. Based on this concept, we introduce a Bidirectional Transition (BiT) model, which leverages the ability to bidirectionally predict environmental transitions both forward and backward to extract reliable representations. Our model demonstrates competitive generalization performance and sample efficiency on two settings of the DeepMind Control suite. Additionally, we utilize robotic manipulation and CARLA simulators to demonstrate the wide applicability of our method.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.