Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Nov 2023]
Title:SinSR: Diffusion-Based Image Super-Resolution in a Single Step
View PDFAbstract:While super-resolution (SR) methods based on diffusion models exhibit promising results, their practical application is hindered by the substantial number of required inference steps. Recent methods utilize degraded images in the initial state, thereby shortening the Markov chain. Nevertheless, these solutions either rely on a precise formulation of the degradation process or still necessitate a relatively lengthy generation path (e.g., 15 iterations). To enhance inference speed, we propose a simple yet effective method for achieving single-step SR generation, named SinSR. Specifically, we first derive a deterministic sampling process from the most recent state-of-the-art (SOTA) method for accelerating diffusion-based SR. This allows the mapping between the input random noise and the generated high-resolution image to be obtained in a reduced and acceptable number of inference steps during training. We show that this deterministic mapping can be distilled into a student model that performs SR within only one inference step. Additionally, we propose a novel consistency-preserving loss to simultaneously leverage the ground-truth image during the distillation process, ensuring that the performance of the student model is not solely bound by the feature manifold of the teacher model, resulting in further performance improvement. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the proposed method can achieve comparable or even superior performance compared to both previous SOTA methods and the teacher model, in just one sampling step, resulting in a remarkable up to x10 speedup for inference. Our code will be released at this https URL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.