Computer Science > Information Retrieval
[Submitted on 26 Nov 2023]
Title:Query-LIFE: Query-aware Language Image Fusion Embedding for E-Commerce Relevance
View PDFAbstract:Relevance module plays a fundamental role in e-commerce search as they are responsible for selecting relevant products from thousands of items based on user queries, thereby enhancing users experience and efficiency. The traditional approach models the relevance based product titles and queries, but the information in titles alone maybe insufficient to describe the products completely. A more general optimization approach is to further leverage product image information. In recent years, vision-language pre-training models have achieved impressive results in many scenarios, which leverage contrastive learning to map both textual and visual features into a joint embedding space. In e-commerce, a common practice is to fine-tune on the pre-trained model based on e-commerce data. However, the performance is sub-optimal because the vision-language pre-training models lack of alignment specifically designed for queries. In this paper, we propose a method called Query-LIFE (Query-aware Language Image Fusion Embedding) to address these challenges. Query-LIFE utilizes a query-based multimodal fusion to effectively incorporate the image and title based on the product types. Additionally, it employs query-aware modal alignment to enhance the accuracy of the comprehensive representation of products. Furthermore, we design GenFilt, which utilizes the generation capability of large models to filter out false negative samples and further improve the overall performance of the contrastive learning task in the model. Experiments have demonstrated that Query-LIFE outperforms existing baselines. We have conducted ablation studies and human evaluations to validate the effectiveness of each module within Query-LIFE. Moreover, Query-LIFE has been deployed on Miravia Search, resulting in improved both relevance and conversion efficiency.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.