Computer Science > Computer Vision and Pattern Recognition
[Submitted on 15 Nov 2023]
Title:SparseSpikformer: A Co-Design Framework for Token and Weight Pruning in Spiking Transformer
View PDFAbstract:As the third-generation neural network, the Spiking Neural Network (SNN) has the advantages of low power consumption and high energy efficiency, making it suitable for implementation on edge devices. More recently, the most advanced SNN, Spikformer, combines the self-attention module from Transformer with SNN to achieve remarkable performance. However, it adopts larger channel dimensions in MLP layers, leading to an increased number of redundant model parameters. To effectively decrease the computational complexity and weight parameters of the model, we explore the Lottery Ticket Hypothesis (LTH) and discover a very sparse ($\ge$90%) subnetwork that achieves comparable performance to the original network. Furthermore, we also design a lightweight token selector module, which can remove unimportant background information from images based on the average spike firing rate of neurons, selecting only essential foreground image tokens to participate in attention calculation. Based on that, we present SparseSpikformer, a co-design framework aimed at achieving sparsity in Spikformer through token and weight pruning techniques. Experimental results demonstrate that our framework can significantly reduce 90% model parameters and cut down Giga Floating-Point Operations (GFLOPs) by 20% while maintaining the accuracy of the original model.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.