Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 8 Oct 2023]
Title:Partial Rank Similarity Minimization Method for Quality MOS Prediction of Unseen Speech Synthesis Systems in Zero-Shot and Semi-supervised setting
View PDFAbstract:This paper introduces a novel objective function for quality mean opinion score (MOS) prediction of unseen speech synthesis systems. The proposed function measures the similarity of relative positions of predicted MOS values, in a mini-batch, rather than the actual MOS values. That is the partial rank similarity is measured (PRS) rather than the individual MOS values as with the L1 loss. Our experiments on out-of-domain speech synthesis systems demonstrate that the PRS outperforms L1 loss in zero-shot and semi-supervised settings, exhibiting stronger correlation with ground truth. These findings highlight the importance of considering rank order, as done by PRS, when training MOS prediction models. We also argue that mean squared error and linear correlation coefficient metrics may be unreliable for evaluating MOS prediction models. In conclusion, PRS-trained models provide a robust framework for evaluating speech quality and offer insights for developing high-quality speech synthesis systems. Code and models are available at this http URL
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.