Electrical Engineering and Systems Science > Signal Processing
[Submitted on 21 Sep 2023]
Title:SCVCNet: Sliding cross-vector convolution network for cross-task and inter-individual-set EEG-based cognitive workload recognition
View PDFAbstract:This paper presents a generic approach for applying the cognitive workload recognizer by exploiting common electroencephalogram (EEG) patterns across different human-machine tasks and individual sets. We propose a neural network called SCVCNet, which eliminates task- and individual-set-related interferences in EEGs by analyzing finer-grained frequency structures in the power spectral densities. The SCVCNet utilizes a sliding cross-vector convolution (SCVC) operation, where paired input layers representing the theta and alpha power are employed. By extracting the weights from a kernel matrix's central row and column, we compute the weighted sum of the two vectors around a specified scalp location. Next, we introduce an inter-frequency-point feature integration module to fuse the SCVC feature maps. Finally, we combined the two modules with the output-channel pooling and classification layers to construct the model. To train the SCVCNet, we employ the regularized least-square method with ridge regression and the extreme learning machine theory. We validate its performance using three databases, each consisting of distinct tasks performed by independent participant groups. The average accuracy (0.6813 and 0.6229) and F1 score (0.6743 and 0.6076) achieved in two different validation paradigms show partially higher performance than the previous works. All features and algorithms are available on website:this https URL.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.