Mathematics > Numerical Analysis
[Submitted on 4 Oct 2023]
Title:High order numerical methods based on quadratic spline collocation method and averaged L1 scheme for the variable-order time fractional mobile/immobile diffusion equation
View PDFAbstract:In this paper, we consider the variable-order time fractional mobile/immobile diffusion (TF-MID) equation in two-dimensional spatial domain, where the fractional order $\alpha(t)$ satisfies $0<\alpha_{*}\leq \alpha(t)\leq \alpha^{*}<1$. We combine the quadratic spline collocation (QSC) method and the $L1^+$ formula to propose a QSC-$L1^+$ scheme. It can be proved that, the QSC-$L1^+$ scheme is unconditionally stable and convergent with $\mathcal{O}(\tau^{\min{\{3-\alpha^*-\alpha(0),2\}}} + \Delta x^{2}+\Delta y^{2})$, where $\tau$, $\Delta x$ and $\Delta y$ are the temporal and spatial step sizes, respectively. With some proper assumptions on $\alpha(t)$, the QSC-$L1^+$ scheme has second temporal convergence order even on the uniform mesh, without any restrictions on the solution of the equation. We further construct a novel alternating direction implicit (ADI) framework to develop an ADI-QSC-$L1^+$ scheme, which has the same unconditionally stability and convergence orders. In addition, a fast implementation for the ADI-QSC-$L1^+$ scheme based on the exponential-sum-approximation (ESA) technique is proposed. Moreover, we also introduce the optimal QSC method to improve the spatial convergence to fourth-order. Numerical experiments are attached to support the theoretical analysis, and to demonstrate the effectiveness of the proposed schemes.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.