Electrical Engineering and Systems Science > Systems and Control
[Submitted on 2 Oct 2023]
Title:Risk-Sensitive Inhibitory Control for Safe Reinforcement Learning
View PDFAbstract:Humans have the ability to deviate from their natural behavior when necessary, which is a cognitive process called response inhibition. Similar approaches have independently received increasing attention in recent years for ensuring the safety of control. Realized using control barrier functions or predictive safety filters, these approaches can effectively ensure the satisfaction of state constraints through an online adaptation of nominal control laws, e.g., obtained through reinforcement learning. While the focus of these realizations of inhibitory control has been on risk-neutral formulations, human studies have shown a tight link between response inhibition and risk attitude. Inspired by this insight, we propose a flexible, risk-sensitive method for inhibitory control. Our method is based on a risk-aware condition for value functions, which guarantees the satisfaction of state constraints. We propose a method for learning these value functions using common techniques from reinforcement learning and derive sufficient conditions for its success. By enforcing the derived safety conditions online using the learned value function, risk-sensitive inhibitory control is effectively achieved. The effectiveness of the developed control scheme is demonstrated in simulations.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.