Computer Science > Software Engineering
[Submitted on 30 Sep 2023]
Title:Empirical Study on Transformer-based Techniques for Software Engineering
View PDFAbstract:Many Transformer-based pre-trained models for code have been developed and applied to code-related tasks. In this paper, we review the existing literature, examine the suitability of model architectures for different tasks, and look at the generalization ability of models on different datasets, and their resource consumption.
We examine three very representative pre-trained models for code: CodeBERT, CodeGPT, and CodeT5, and conduct experiments on the top-4 most targeted software engineering tasks that we found in our literature survey: Code Summarization, Bug Fixing, Bug Detection, and Code Search. In our study, we showcase the capability of decoder-only models (CodeGPT) for specific generation tasks under state-of-the-art evaluation metrics and contest the common belief that the encoder-decoder architecture is optimal for general-purpose coding tasks. Additionally, we found that the most frequently used models are not necessarily the most suitable for certain applications and the developers' needs are not adequately addressed by current research. As well, we found that the benchmark and frequent dataset for Bug Fixing and Code Summarization both fail to enable models to generalize onto other datasets for the same task (the frequent dataset refers to the dataset with the highest frequency used in literature other than the benchmark). We use statistical testing to support our conclusions from experiments. Finally, CodeBERT is highly efficient for understanding tasks, whereas CodeT5's efficiency for generation tasks is in doubt, as the highest resource consumption does not guarantee a consistent better performance on different metrics. We also discuss the numerous practical issues in advancing future research on transformer-based models for code-related tasks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.