Computer Science > Robotics
[Submitted on 29 Sep 2023]
Title:Toward Optimal Tabletop Rearrangement with Multiple Manipulation Primitives
View PDFAbstract:In practice, many types of manipulation actions (e.g., pick-n-place and push) are needed to accomplish real-world manipulation tasks. Yet, limited research exists that explores the synergistic integration of different manipulation actions for optimally solving long-horizon task-and-motion planning problems. In this study, we propose and investigate planning high-quality action sequences for solving long-horizon tabletop rearrangement tasks in which multiple manipulation primitives are required. Denoting the problem rearrangement with multiple manipulation primitives (REMP), we develop two algorithms, hierarchical best-first search (HBFS) and parallel Monte Carlo tree search for multi-primitive rearrangement (PMMR) toward optimally resolving the challenge. Extensive simulation and real robot experiments demonstrate that both methods effectively tackle REMP, with HBFS excelling in planning speed and PMMR producing human-like, high-quality solutions with a nearly 100% success rate.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.