Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Sep 2023]
Title:Joint Self-supervised Depth and Optical Flow Estimation towards Dynamic Objects
View PDFAbstract:Significant attention has been attracted to deep learning-based depth estimates. Dynamic objects become the most hard problems in inter-frame-supervised depth estimates due to the uncertainty in adjacent frames. Thus, integrating optical flow information with depth estimation is a feasible solution, as the optical flow is an essential motion representation. In this work, we construct a joint inter-frame-supervised depth and optical flow estimation framework, which predicts depths in various motions by minimizing pixel wrap errors in bilateral photometric re-projections and optical vectors. For motion segmentation, we adaptively segment the preliminary estimated optical flow map with large areas of connectivity. In self-supervised depth estimation, different motion regions are predicted independently and then composite into a complete depth. Further, the pose and depth estimations re-synthesize the optical flow maps, serving to compute reconstruction errors with the preliminary predictions. Our proposed joint depth and optical flow estimation outperforms existing depth estimators on the KITTI Depth dataset, both with and without Cityscapes pretraining. Additionally, our optical flow results demonstrate competitive performance on the KITTI Flow 2015 dataset.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.