Computer Science > Computer Vision and Pattern Recognition
[Submitted on 24 Sep 2023 (v1), last revised 23 Oct 2023 (this version, v3)]
Title:Global-correlated 3D-decoupling Transformer for Clothed Avatar Reconstruction
View PDFAbstract:Reconstructing 3D clothed human avatars from single images is a challenging task, especially when encountering complex poses and loose clothing. Current methods exhibit limitations in performance, largely attributable to their dependence on insufficient 2D image features and inconsistent query methods. Owing to this, we present the Global-correlated 3D-decoupling Transformer for clothed Avatar reconstruction (GTA), a novel transformer-based architecture that reconstructs clothed human avatars from monocular images. Our approach leverages transformer architectures by utilizing a Vision Transformer model as an encoder for capturing global-correlated image features. Subsequently, our innovative 3D-decoupling decoder employs cross-attention to decouple tri-plane features, using learnable embeddings as queries for cross-plane generation. To effectively enhance feature fusion with the tri-plane 3D feature and human body prior, we propose a hybrid prior fusion strategy combining spatial and prior-enhanced queries, leveraging the benefits of spatial localization and human body prior knowledge. Comprehensive experiments on CAPE and THuman2.0 datasets illustrate that our method outperforms state-of-the-art approaches in both geometry and texture reconstruction, exhibiting high robustness to challenging poses and loose clothing, and producing higher-resolution textures. Codes will be available at this https URL.
Submission history
From: Zechuan Zhang [view email][v1] Sun, 24 Sep 2023 02:10:25 UTC (17,150 KB)
[v2] Tue, 26 Sep 2023 13:18:20 UTC (17,150 KB)
[v3] Mon, 23 Oct 2023 11:42:33 UTC (41,474 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.