Mathematics > Numerical Analysis
[Submitted on 2 Sep 2023]
Title:Weak Boundary Conditions for Lagrangian Shock Hydrodynamics: A High-Order Finite Element Implementation on Curved Boundaries
View PDFAbstract:We propose a new Nitsche-type approach for weak enforcement of normal velocity boundary conditions for a Lagrangian discretization of the compressible shock-hydrodynamics equations using high-order finite elements on curved boundaries. Specifically, the variational formulation is appropriately modified to enforce free-slip wall boundary conditions, without perturbing the structure of the function spaces used to represent the solution, with a considerable simplification with respect to traditional approaches. Total energy is conserved and the resulting mass matrices are constant in time. The robustness and accuracy of the proposed method are validated with an extensive set of tests involving nontrivial curved boundaries.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.