Computer Science > Graphics
[Submitted on 18 Aug 2023 (v1), last revised 24 Jan 2024 (this version, v4)]
Title:GIPC: Fast and stable Gauss-Newton optimization of IPC barrier energy
View PDFAbstract:Barrier functions are crucial for maintaining an intersection and inversion free simulation trajectory but existing methods which directly use distance can restrict implementation design and performance. We present an approach to rewriting the barrier function for arriving at an efficient and robust approximation of its Hessian. The key idea is to formulate a simplicial geometric measure of contact using mesh boundary elements, from which analytic eigensystems are derived and enhanced with filtering and stiffening terms that ensure robustness with respect to the convergence of a Project-Newton solver. A further advantage of our rewriting of the barrier function is that it naturally caters to the notorious case of nearly-parallel edge-edge contacts for which we also present a novel analytic eigensystem. Our approach is thus well suited for standard second order unconstrained optimization strategies for resolving contacts, minimizing nonlinear nonconvex functions where the Hessian may be indefinite. The efficiency of our eigensystems alone yields a 3x speedup over the standard IPC barrier formulation. We further apply our analytic proxy eigensystems to produce an entirely GPU-based implementation of IPC with significant further acceleration.
Submission history
From: Kemeng Huang [view email][v1] Fri, 18 Aug 2023 09:01:14 UTC (13,668 KB)
[v2] Wed, 17 Jan 2024 06:23:15 UTC (37,815 KB)
[v3] Sun, 21 Jan 2024 00:32:08 UTC (37,756 KB)
[v4] Wed, 24 Jan 2024 09:34:40 UTC (43,799 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.