Computer Science > Computer Vision and Pattern Recognition
[Submitted on 7 Aug 2023 (v1), last revised 11 Sep 2024 (this version, v2)]
Title:Nerve Block Target Localization and Needle Guidance for Autonomous Robotic Ultrasound Guided Regional Anesthesia
View PDFAbstract:Visual servoing for the development of autonomous robotic systems capable of administering UltraSound (US) guided regional anesthesia requires real-time segmentation of nerves, needle tip localization and needle trajectory extrapolation. First, we recruited 227 patients to build a large dataset of 41,000 anesthesiologist annotated images from US videos of brachial plexus nerves and developed models to localize nerves in the US images. Generalizability of the best suited model was tested on the datasets constructed from separate US scanners. Using these nerve segmentation predictions, we define automated anesthesia needle targets by fitting an ellipse to the nerve contours. Next, we developed an image analysis tool to guide the needle toward their targets. For the segmentation of the needle, a natural RGB pre-trained neural network was first fine-tuned on a large US dataset for domain transfer and then adapted for the needle using a small dataset. The segmented needle trajectory angle is calculated using Radon transformation and the trajectory is extrapolated from the needle tip. The intersection of the extrapolated trajectory with the needle target guides the needle navigation for drug delivery. The needle trajectory average error was within acceptable range of 5 mm as per experienced anesthesiologists. The entire dataset has been released publicly for further study by the research community at this https URL
Submission history
From: Abhishek Tyagi [view email][v1] Mon, 7 Aug 2023 16:40:19 UTC (544 KB)
[v2] Wed, 11 Sep 2024 19:06:55 UTC (351 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.