Computer Science > Machine Learning
[Submitted on 4 Aug 2023]
Title:Learning Optimal Admission Control in Partially Observable Queueing Networks
View PDFAbstract:We present an efficient reinforcement learning algorithm that learns the optimal admission control policy in a partially observable queueing network. Specifically, only the arrival and departure times from the network are observable, and optimality refers to the average holding/rejection cost in infinite horizon.
While reinforcement learning in Partially Observable Markov Decision Processes (POMDP) is prohibitively expensive in general, we show that our algorithm has a regret that only depends sub-linearly on the maximal number of jobs in the network, $S$. In particular, in contrast with existing regret analyses, our regret bound does not depend on the diameter of the underlying Markov Decision Process (MDP), which in most queueing systems is at least exponential in $S$.
The novelty of our approach is to leverage Norton's equivalent theorem for closed product-form queueing networks and an efficient reinforcement learning algorithm for MDPs with the structure of birth-and-death processes.
Submission history
From: Louis-Sébastien Rebuffi [view email][v1] Fri, 4 Aug 2023 15:40:23 UTC (667 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.