Computer Science > Artificial Intelligence
[Submitted on 19 Jul 2023 (v1), last revised 21 Jul 2023 (this version, v2)]
Title:A data science axiology: the nature, value, and risks of data science
View PDFAbstract:Data science is not a science. It is a research paradigm with an unfathomed scope, scale, complexity, and power for knowledge discovery that is not otherwise possible and can be beyond human reasoning. It is changing our world practically and profoundly already widely deployed in tens of thousands of applications in every discipline in an AI Arms Race that, due to its inscrutability, can lead to unfathomed risks. This paper presents an axiology of data science, its purpose, nature, importance, risks, and value for problem solving, by exploring and evaluating its remarkable, definitive features. As data science is in its infancy, this initial, speculative axiology is intended to aid in understanding and defining data science to recognize its potential benefits, risks, and open research challenges. AI based data science is inherently about uncertainty that may be more realistic than our preference for the certainty of science. Data science will have impacts far beyond knowledge discovery and will take us into new ways of understanding the world.
Submission history
From: Michael Brodie [view email][v1] Wed, 19 Jul 2023 21:12:04 UTC (979 KB)
[v2] Fri, 21 Jul 2023 21:32:12 UTC (979 KB)
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.