Computer Science > Machine Learning
[Submitted on 28 Jun 2023 (v1), last revised 24 Jul 2023 (this version, v3)]
Title:Defining data science: a new field of inquiry
View PDFAbstract:Data science is not a science. It is a research paradigm. Its power, scope, and scale will surpass science, our most powerful research paradigm, to enable knowledge discovery and change our world. We have yet to understand and define it, vital to realizing its potential and managing its risks. Modern data science is in its infancy. Emerging slowly since 1962 and rapidly since 2000, it is a fundamentally new field of inquiry, one of the most active, powerful, and rapidly evolving 21st century innovations. Due to its value, power, and applicability, it is emerging in over 40 disciplines, hundreds of research areas, and thousands of applications. Millions of data science publications contain myriad definitions of data science and data science problem solving. Due to its infancy, many definitions are independent, application specific, mutually incomplete, redundant, or inconsistent, hence so is data science. This research addresses this data science multiple definitions challenge by proposing the development of coherent, unified definition based on a data science reference framework using a data science journal for the data science community to achieve such a definition. This paper provides candidate definitions for essential data science artifacts that are required to discuss such a definition. They are based on the classical research paradigm concept consisting of a philosophy of data science, the data science problem solving paradigm, and the six component data science reference framework (axiology, ontology, epistemology, methodology, methods, technology) that is a frequently called for unifying framework with which to define, unify, and evolve data science. It presents challenges for defining data science, solution approaches, i.e., means for defining data science, and their requirements and benefits as the basis of a comprehensive solution.
Submission history
From: Michael Brodie [view email][v1] Wed, 28 Jun 2023 12:58:42 UTC (798 KB)
[v2] Tue, 11 Jul 2023 14:11:14 UTC (796 KB)
[v3] Mon, 24 Jul 2023 12:32:58 UTC (796 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.