Computer Science > Robotics
[Submitted on 6 Jun 2023]
Title:Bridging the Gap Between Multi-Step and One-Shot Trajectory Prediction via Self-Supervision
View PDFAbstract:Accurate vehicle trajectory prediction is an unsolved problem in autonomous driving with various open research questions. State-of-the-art approaches regress trajectories either in a one-shot or step-wise manner. Although one-shot approaches are usually preferred for their simplicity, they relinquish powerful self-supervision schemes that can be constructed by chaining multiple time-steps. We address this issue by proposing a middle-ground where multiple trajectory segments are chained together. Our proposed Multi-Branch Self-Supervised Predictor receives additional training on new predictions starting at intermediate future segments. In addition, the model 'imagines' the latent context and 'predicts the past' while combining multi-modal trajectories in a tree-like manner. We deliberately keep aspects such as interaction and environment modeling simplistic and nevertheless achieve competitive results on the INTERACTION dataset. Furthermore, we investigate the sparsely explored uncertainty estimation of deterministic predictors. We find positive correlations between the prediction error and two proposed metrics, which might pave way for determining prediction confidence.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.