Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Jun 2023]
Title:A Robust Likelihood Model for Novelty Detection
View PDFAbstract:Current approaches to novelty or anomaly detection are based on deep neural networks. Despite their effectiveness, neural networks are also vulnerable to imperceptible deformations of the input data. This is a serious issue in critical applications, or when data alterations are generated by an adversarial attack. While this is a known problem that has been studied in recent years for the case of supervised learning, the case of novelty detection has received very limited attention. Indeed, in this latter setting the learning is typically unsupervised because outlier data is not available during training, and new approaches for this case need to be investigated. We propose a new prior that aims at learning a robust likelihood for the novelty test, as a defense against attacks. We also integrate the same prior with a state-of-the-art novelty detection approach. Because of the geometric properties of that approach, the resulting robust training is computationally very efficient. An initial evaluation of the method indicates that it is effective at improving performance with respect to the standard models in the absence and presence of attacks.
Submission history
From: Gianfranco Doretto [view email][v1] Tue, 6 Jun 2023 01:02:31 UTC (3,279 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.