Computer Science > Machine Learning
[Submitted on 25 May 2023]
Title:Reward-Machine-Guided, Self-Paced Reinforcement Learning
View PDFAbstract:Self-paced reinforcement learning (RL) aims to improve the data efficiency of learning by automatically creating sequences, namely curricula, of probability distributions over contexts. However, existing techniques for self-paced RL fail in long-horizon planning tasks that involve temporally extended behaviors. We hypothesize that taking advantage of prior knowledge about the underlying task structure can improve the effectiveness of self-paced RL. We develop a self-paced RL algorithm guided by reward machines, i.e., a type of finite-state machine that encodes the underlying task structure. The algorithm integrates reward machines in 1) the update of the policy and value functions obtained by any RL algorithm of choice, and 2) the update of the automated curriculum that generates context distributions. Our empirical results evidence that the proposed algorithm achieves optimal behavior reliably even in cases in which existing baselines cannot make any meaningful progress. It also decreases the curriculum length and reduces the variance in the curriculum generation process by up to one-fourth and four orders of magnitude, respectively.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.