Mathematics > Optimization and Control
[Submitted on 24 May 2023 (v1), last revised 28 Jul 2024 (this version, v3)]
Title:Time-Varying Convex Optimization: A Contraction and Equilibrium Tracking Approach
View PDF HTML (experimental)Abstract:In this article, we provide a novel and broadly-applicable contraction-theoretic approach to continuous-time time-varying convex optimization. For any parameter-dependent contracting dynamics, we show that the tracking error is asymptotically proportional to the rate of change of the parameter with proportionality constant upper bounded by Lipschitz constant in which the parameter appears divided by the contraction rate of the dynamics squared. We additionally establish that any parameter-dependent contracting dynamics can be augmented with a feedforward prediction term to ensure that the tracking error converges to zero exponentially quickly. To apply these results to time-varying convex optimization problems, we establish the strong infinitesimal contractivity of dynamics solving three canonical problems, namely monotone inclusions, linear equality-constrained problems, and composite minimization problems. For each of these problems, we prove the sharpest-known rates of contraction and provide explicit tracking error bounds between solution trajectories and minimizing trajectories. We validate our theoretical results on three numerical examples including an application to control-barrier function based controller design.
Submission history
From: Alexander Davydov [view email][v1] Wed, 24 May 2023 22:06:37 UTC (978 KB)
[v2] Thu, 30 May 2024 02:04:24 UTC (1,443 KB)
[v3] Sun, 28 Jul 2024 06:06:38 UTC (1,443 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.