Computer Science > Software Engineering
[Submitted on 24 May 2023]
Title:Using the Uniqueness of Global Identifiers to Determine the Provenance of Python Software Source Code
View PDFAbstract:We consider the problem of identifying the provenance of free/open source software (FOSS) and specifically the need of identifying where reused source code has been copied from. We propose a lightweight approach to solve the problem based on software identifiers-such as the names of variables, classes, and functions chosen by programmers. The proposed approach is able to efficiently narrow down to a small set of candidate origin products, to be further analyzed with more expensive techniques to make a final provenance this http URL analyzing the PyPI (Python Packaging Index) open source ecosystem we find that globally defined identifiers are very distinct. Across PyPI's 244 K packages we found 11.2 M different global identifiers (classes and method/function names-with only 0.6% of identifiers shared among the two types of entities); 76% of identifiers were used only in one package, and 93% in at most 3. Randomly selecting 3 non-frequent global identifiers from an input product is enough to narrow down its origins to a maximum of 3 products within 89% of the this http URL validate the proposed approach by mapping Debian source packages implemented in Python to the corresponding PyPI packages; this approach uses at most five trials, where each trial uses three randomly chosen global identifiers from a randomly chosen python file of the subject software package, then ranks results using a popularity index and requires to inspect only the top result. In our experiments, this method is effective at finding the true origin of a project with a recall of 0.9 and precision of 0.77.
Submission history
From: Stefano Zacchiroli [view email] [via CCSD proxy][v1] Wed, 24 May 2023 07:42:11 UTC (1,264 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.