Mathematics > Optimization and Control
[Submitted on 15 May 2023 (v1), last revised 21 Jun 2023 (this version, v3)]
Title:Model Predictive Control with Reach-avoid Analysis
View PDFAbstract:In this paper we investigate the optimal controller synthesis problem, so that the system under the controller can reach a specified target set while satisfying given constraints. Existing model predictive control (MPC) methods learn from a set of discrete states visited by previous (sub-)optimized trajectories and thus result in computationally expensive mixed-integer nonlinear optimization. In this paper a novel MPC method is proposed based on reach-avoid analysis to solve the controller synthesis problem iteratively. The reach-avoid analysis is concerned with computing a reach-avoid set which is a set of initial states such that the system can reach the target set successfully. It not only provides terminal constraints, which ensure feasibility of MPC, but also expands discrete states in existing methods into a continuous set (i.e., reach-avoid sets) and thus leads to nonlinear optimization which is more computationally tractable online due to the absence of integer variables. Finally, we evaluate the proposed method and make comparisons with state-of-the-art ones based on several examples.
Submission history
From: Dejin Ren [view email][v1] Mon, 15 May 2023 15:18:34 UTC (644 KB)
[v2] Wed, 17 May 2023 02:56:24 UTC (646 KB)
[v3] Wed, 21 Jun 2023 07:30:59 UTC (822 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.