Computer Science > Information Theory
[Submitted on 30 Apr 2023]
Title:Self-information Domain-based Neural CSI Compression with Feature Coupling
View PDFAbstract:Deep learning (DL)-based channel state information (CSI) feedback methods compressed the CSI matrix by exploiting its delay and angle features straightforwardly, while the measure in terms of information contained in the CSI matrix has rarely been considered. Based on this observation, we introduce self-information as an informative CSI representation from the perspective of information theory, which reflects the amount of information of the original CSI matrix in an explicit way. Then, a novel DL-based network is proposed for temporal CSI compression in the self-information domain, namely SD-CsiNet. The proposed SD-CsiNet projects the raw CSI onto a self-information matrix in the newly-defined self-information domain, extracts both temporal and spatial features of the self-information matrix, and then couples these two features for effective compression. Experimental results verify the effectiveness of the proposed SD-CsiNet by exploiting the self-information of CSI. Particularly for compression ratios 1/8 and 1/16, the SD-CsiNet respectively achieves 7.17 dB and 3.68 dB performance gains compared to state-of-the-art methods.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.