Computer Science > Distributed, Parallel, and Cluster Computing
[Submitted on 27 Apr 2023]
Title:Co-Design of the Dense Linear AlgebravSoftware Stack for Multicore Processors
View PDFAbstract:This paper advocates for an intertwined design of the dense linear algebra software stack that breaks down the strict barriers between the high-level, blocked algorithms in LAPACK (Linear Algebra PACKage) and the low-level, architecture-dependent kernels in BLAS (Basic Linear Algebra Subprograms). Specifically, we propose customizing the GEMM (general matrix multiplication) kernel, which is invoked from the blocked algorithms for relevant matrix factorizations in LAPACK, to improve performance on modern multicore processors with hierarchical cache memories. To achieve this, we leverage an analytical model to dynamically adapt the cache configuration parameters of the GEMM to the shape of the matrix operands. Additionally, we accommodate a flexible development of architecture-specific micro-kernels that allow us to further improve the utilization of the cache hierarchy.
Our experiments on two platforms, equipped with ARM (NVIDIA Carmel, Neon) and x86 (AMD EPYC, AVX2) multi-core processors, demonstrate the benefits of this approach in terms of better cache utilization and, in general, higher performance. However, they also reveal the delicate balance between optimizing for multi-threaded parallelism versus cache usage.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.