Computer Science > Programming Languages
[Submitted on 15 Mar 2023]
Title:Transformer Models for Type Inference in the Simply Typed Lambda Calculus: A Case Study in Deep Learning for Code
View PDFAbstract:Despite a growing body of work at the intersection of deep learning and formal languages, there has been relatively little systematic exploration of transformer models for reasoning about typed lambda calculi. This is an interesting area of inquiry for two reasons. First, typed lambda calculi are the lingua franc of programming languages. A set of heuristics that relate various typed lambda calculi to effective neural architectures would provide a systematic method for mapping language features (e.g., polymorphism, subtyping, inheritance, etc.) to architecture choices. Second, transformer models are widely used in deep learning architectures applied to code, but the design and hyperparameter space for them is large and relatively unexplored in programming language applications. Therefore, we suggest a benchmark that allows us to explore exactly this through perhaps the simplest and most fundamental property of a programming language: the relationship between terms and types. Consequently, we begin this inquiry of transformer architectures for typed lambda calculi by exploring the effect of transformer warm-up and optimizer selection in the task of type inference: i.e., predicting the types of lambda calculus terms using only transformers. We find that the optimization landscape is difficult even in this simple setting. One particular experimental finding is that optimization by Adafactor converges much faster compared to the optimization by Adam and RAdam. We conjecture that such different performance of optimizers might be related to the difficulties of generalization over formally generated dataset.
Current browse context:
cs.PL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.