Computer Science > Information Retrieval
[Submitted on 17 Apr 2023 (v1), last revised 26 Nov 2023 (this version, v2)]
Title:Typos-aware Bottlenecked Pre-Training for Robust Dense Retrieval
View PDFAbstract:Current dense retrievers (DRs) are limited in their ability to effectively process misspelled queries, which constitute a significant portion of query traffic in commercial search engines. The main issue is that the pre-trained language model-based encoders used by DRs are typically trained and fine-tuned using clean, well-curated text data. Misspelled queries are typically not found in the data used for training these models, and thus misspelled queries observed at inference time are out-of-distribution compared to the data used for training and fine-tuning. Previous efforts to address this issue have focused on \textit{fine-tuning} strategies, but their effectiveness on misspelled queries remains lower than that of pipelines that employ separate state-of-the-art spell-checking components. To address this challenge, we propose ToRoDer (TypOs-aware bottlenecked pre-training for RObust DEnse Retrieval), a novel re-training strategy for DRs that increases their robustness to misspelled queries while preserving their effectiveness in downstream retrieval tasks. ToRoDer utilizes an encoder-decoder architecture where the encoder takes misspelled text with masked tokens as input and outputs bottlenecked information to the decoder. The decoder then takes as input the bottlenecked embeddings, along with token embeddings of the original text with the misspelled tokens masked out. The pre-training task is to recover the masked tokens for both the encoder and decoder. Our extensive experimental results and detailed ablation studies show that DRs pre-trained with ToRoDer exhibit significantly higher effectiveness on misspelled queries, sensibly closing the gap with pipelines that use a separate, complex spell-checker component, while retaining their effectiveness on correctly spelled queries.
Submission history
From: Shengyao Zhuang [view email][v1] Mon, 17 Apr 2023 10:42:30 UTC (1,037 KB)
[v2] Sun, 26 Nov 2023 23:52:43 UTC (1,061 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.