Statistics > Machine Learning
[Submitted on 15 Apr 2023 (v1), last revised 28 Oct 2024 (this version, v3)]
Title:Efficient Convex Algorithms for Universal Kernel Learning
View PDF HTML (experimental)Abstract:The accuracy and complexity of machine learning algorithms based on kernel optimization are determined by the set of kernels over which they are able to optimize. An ideal set of kernels should: admit a linear parameterization (for tractability); be dense in the set of all kernels (for robustness); be universal (for accuracy). Recently, a framework was proposed for using positive matrices to parameterize a class of positive semi-separable kernels. Although this class can be shown to meet all three criteria, previous algorithms for optimization of such kernels were limited to classification and furthermore relied on computationally complex Semidefinite Programming (SDP) algorithms. In this paper, we pose the problem of learning semiseparable kernels as a minimax optimization problem and propose a SVD-QCQP primal-dual algorithm which dramatically reduces the computational complexity as compared with previous SDP-based approaches. Furthermore, we provide an efficient implementation of this algorithm for both classification and regression -- an implementation which enables us to solve problems with 100 features and up to 30,000 datums. Finally, when applied to benchmark data, the algorithm demonstrates the potential for significant improvement in accuracy over typical (but non-convex) approaches such as Neural Nets and Random Forest with similar or better computation time.
Submission history
From: Aleksandr Talitckii [view email][v1] Sat, 15 Apr 2023 04:57:37 UTC (30,111 KB)
[v2] Sat, 24 Feb 2024 20:47:43 UTC (30,475 KB)
[v3] Mon, 28 Oct 2024 20:21:35 UTC (30,476 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.