Computer Science > Computer Vision and Pattern Recognition
[Submitted on 30 Mar 2023 (v1), last revised 4 Sep 2024 (this version, v4)]
Title:Model-agnostic explainable artificial intelligence for object detection in image data
View PDFAbstract:In recent years, deep neural networks have been widely used for building high-performance Artificial Intelligence (AI) systems for computer vision applications. Object detection is a fundamental task in computer vision, which has been greatly progressed through developing large and intricate AI models. However, the lack of transparency is a big challenge that may not allow the widespread adoption of these models. Explainable artificial intelligence is a field of research where methods are developed to help users understand the behavior, decision logics, and vulnerabilities of AI systems. Previously, few explanation methods were developed for object detection based on random masking. However, random masks may raise some issues regarding the actual importance of pixels within an image. In this paper, we design and implement a black-box explanation method named Black-box Object Detection Explanation by Masking (BODEM) through adopting a hierarchical random masking approach for object detection systems. We propose a hierarchical random masking framework in which coarse-grained masks are used in lower levels to find salient regions within an image, and fine-grained mask are used to refine the salient regions in higher levels. Experimentations on various object detection datasets and models showed that BODEM can effectively explain the behavior of object detectors. Moreover, our method outperformed Detector Randomized Input Sampling for Explanation (D-RISE) and Local Interpretable Model-agnostic Explanations (LIME) with respect to different quantitative measures of explanation effectiveness. The experimental results demonstrate that BODEM can be an effective method for explaining and validating object detection systems in black-box testing scenarios.
Submission history
From: Milad Moradi [view email][v1] Thu, 30 Mar 2023 09:29:03 UTC (2,826 KB)
[v2] Wed, 12 Apr 2023 13:06:55 UTC (2,624 KB)
[v3] Thu, 25 Apr 2024 20:56:39 UTC (1,250 KB)
[v4] Wed, 4 Sep 2024 09:27:35 UTC (1,413 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.