Computer Science > Human-Computer Interaction
[Submitted on 29 Mar 2023 (v1), last revised 26 Apr 2023 (this version, v3)]
Title:Reading Strategies for Graph Visualizations that Wrap Around in Torus Topology
View PDFAbstract:We investigate reading strategies for node-link diagrams that wrap around the boundaries in a flattened torus topology by examining eye tracking data recorded in a previous controlled study. Prior work showed that torus drawing affords greater flexibility in clutter reduction than traditional node-link representations, but impedes link-and-path exploration tasks, while repeating tiles around boundaries aids comprehension. However, it remains unclear what strategies users apply in different wrapping settings. This is important for design implications for future work on more effective wrapped visualizations for network applications, and cyclic data that could benefit from wrapping. We perform visual-exploratory data analysis of gaze data, and conduct statistical tests derived from the patterns identified. Results show distinguishable gaze behaviors, with more visual glances and transitions between areas of interest in the non-replicated layout. Full-context has more successful visual searches than partial-context, but the gaze allocation indicates that the layout could be more space-efficient.
Submission history
From: Kun-Ting Chen [view email][v1] Wed, 29 Mar 2023 23:53:57 UTC (19,550 KB)
[v2] Fri, 7 Apr 2023 13:23:19 UTC (3,707 KB)
[v3] Wed, 26 Apr 2023 15:29:47 UTC (5,134 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.