Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Mar 2023 (v1), last revised 21 Mar 2023 (this version, v2)]
Title:Multi-modal reward for visual relationships-based image captioning
View PDFAbstract:Deep neural networks have achieved promising results in automatic image captioning due to their effective representation learning and context-based content generation capabilities. As a prominent type of deep features used in many of the recent image captioning methods, the well-known bottomup features provide a detailed representation of different objects of the image in comparison with the feature maps directly extracted from the raw image. However, the lack of high-level semantic information about the relationships between these objects is an important drawback of bottom-up features, despite their expensive and resource-demanding extraction procedure. To take advantage of visual relationships in caption generation, this paper proposes a deep neural network architecture for image captioning based on fusing the visual relationships information extracted from an image's scene graph with the spatial feature maps of the image. A multi-modal reward function is then introduced for deep reinforcement learning of the proposed network using a combination of language and vision similarities in a common embedding space. The results of extensive experimentation on the MSCOCO dataset show the effectiveness of using visual relationships in the proposed captioning method. Moreover, the results clearly indicate that the proposed multi-modal reward in deep reinforcement learning leads to better model optimization, outperforming several state-of-the-art image captioning algorithms, while using light and easy to extract image features. A detailed experimental study of the components constituting the proposed method is also presented.
Submission history
From: Ali Abedi [view email][v1] Sun, 19 Mar 2023 20:52:44 UTC (10,955 KB)
[v2] Tue, 21 Mar 2023 16:39:10 UTC (10,955 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.