Electrical Engineering and Systems Science > Signal Processing
[Submitted on 15 Mar 2023]
Title:Reconfigurable Intelligent Surface-Assisted Cross-Layer Authentication for Secure and Efficient Vehicular Communications
View PDFAbstract:Intelligent transportation systems increasingly depend on wireless communication, facilitating real-time vehicular communication. In this context, message authentication is crucial for establishing secure and reliable communication. However, security solutions must consider the dynamic nature of vehicular communication links, which fluctuate between line-of-sight (LoS) and non-line-of-sight (NLoS). In this paper, we propose a lightweight cross-layer authentication scheme that employs public-key infrastructure-based authentication for initial legitimacy detection while using keyed-based physical-layer re-authentication for message verification. However, the latter's detection probability (P_d) decreases with the reduction of the signal-to-noise ratio (SNR). Therefore, we examine using Reconfigurable Intelligent Surface (RIS) to enhance the SNR value directed toward the designated vehicle and consequently improve the P_d, especially for NLoS scenarios. We conducted theoretical analysis and practical implementation of the proposed scheme using a 1-bit RIS, consisting of 64 x 64 reflective units. Experimental results show a significant improvement in the P_d, increasing from 0.82 to 0.96 at SNR = - 6 dB for an orthogonal frequency division multiplexing system with 128 subcarriers. We also conducted informal and formal security analyses, using Burrows-Abadi-Needham (BAN)-logic, to prove the scheme's ability to resist passive and active attacks. Finally, the computation and communication comparisons demonstrate the superior performance of the proposed scheme compared to traditional crypto-based methods.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.