Quantitative Finance > Portfolio Management
[Submitted on 2 Mar 2023 (v1), last revised 17 May 2024 (this version, v3)]
Title:Uniform Pessimistic Risk and its Optimal Portfolio
View PDF HTML (experimental)Abstract:The optimal allocation of assets has been widely discussed with the theoretical analysis of risk measures, and pessimism is one of the most attractive approaches beyond the conventional optimal portfolio model. The $\alpha$-risk plays a crucial role in deriving a broad class of pessimistic optimal portfolios. However, estimating an optimal portfolio assessed by a pessimistic risk is still challenging due to the absence of a computationally tractable model. In this study, we propose an integral of $\alpha$-risk called the \textit{uniform pessimistic risk} and the computational algorithm to obtain an optimal portfolio based on the risk. Further, we investigate the theoretical properties of the proposed risk in view of three different approaches: multiple quantile regression, the proper scoring rule, and distributionally robust optimization. Real data analysis of three stock datasets (S\&P500, CSI500, KOSPI200) demonstrates the usefulness of the proposed risk and portfolio model.
Submission history
From: Sungchul Hong [view email][v1] Thu, 2 Mar 2023 09:41:15 UTC (21,573 KB)
[v2] Thu, 16 May 2024 10:15:20 UTC (5,498 KB)
[v3] Fri, 17 May 2024 07:35:19 UTC (5,498 KB)
Current browse context:
q-fin.PM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.