Computer Science > Robotics
[Submitted on 5 Mar 2023]
Title:Tac-VGNN: A Voronoi Graph Neural Network for Pose-Based Tactile Servoing
View PDFAbstract:Tactile pose estimation and tactile servoing are fundamental capabilities of robot touch. Reliable and precise pose estimation can be provided by applying deep learning models to high-resolution optical tactile sensors. Given the recent successes of Graph Neural Network (GNN) and the effectiveness of Voronoi features, we developed a Tactile Voronoi Graph Neural Network (Tac-VGNN) to achieve reliable pose-based tactile servoing relying on a biomimetic optical tactile sensor (TacTip). The GNN is well suited to modeling the distribution relationship between shear motions of the tactile markers, while the Voronoi diagram supplements this with area-based tactile features related to contact depth. The experiment results showed that the Tac-VGNN model can help enhance data interpretability during graph generation and model training efficiency significantly than CNN-based methods. It also improved pose estimation accuracy along vertical depth by 28.57% over vanilla GNN without Voronoi features and achieved better performance on the real surface following tasks with smoother robot control trajectories. For more project details, please view our website: this https URL
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.