Computer Science > Data Structures and Algorithms
[Submitted on 19 Feb 2023 (v1), last revised 3 Jul 2023 (this version, v2)]
Title:Parameterized Max Min Feedback Vertex Set
View PDFAbstract:Given a graph $G$ and an integer $k$, Max Min FVS asks whether there exists a minimal set of vertices of size at least $k$ whose deletion destroys all cycles. We present several results that improve upon the state of the art of the parameterized complexity of this problem with respect to both structural and natural parameters.
Using standard DP techniques, we first present an algorithm of time $\textrm{tw}^{O(\textrm{tw})}n^{O(1)}$, significantly generalizing a recent algorithm of Gaikwad et al. of time $\textrm{vc}^{O(\textrm{vc})}n^{O(1)}$, where $\textrm{tw}, \textrm{vc}$ denote the input graph's treewidth and vertex cover respectively. Subsequently, we show that both of these algorithms are essentially optimal, since a $\textrm{vc}^{o(\textrm{vc})}n^{O(1)}$ algorithm would refute the ETH.
With respect to the natural parameter $k$, the aforementioned recent work by Gaikwad et al. claimed an FPT branching algorithm with complexity $10^k n^{O(1)}$. We point out that this algorithm is incorrect and present a branching algorithm of complexity $9.34^k n^{O(1)}$.
Submission history
From: Manolis Vasilakis [view email][v1] Sun, 19 Feb 2023 16:02:07 UTC (71 KB)
[v2] Mon, 3 Jul 2023 12:19:40 UTC (183 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.