Computer Science > Computer Vision and Pattern Recognition
[Submitted on 2 Feb 2023 (v1), last revised 19 Oct 2023 (this version, v3)]
Title:IC3: Image Captioning by Committee Consensus
View PDFAbstract:If you ask a human to describe an image, they might do so in a thousand different ways. Traditionally, image captioning models are trained to generate a single "best" (most like a reference) image caption. Unfortunately, doing so encourages captions that are "informationally impoverished," and focus on only a subset of the possible details, while ignoring other potentially useful information in the scene. In this work, we introduce a simple, yet novel, method: "Image Captioning by Committee Consensus" (IC3), designed to generate a single caption that captures high-level details from several annotator viewpoints. Humans rate captions produced by IC3 at least as helpful as baseline SOTA models more than two thirds of the time, and IC3 can improve the performance of SOTA automated recall systems by up to 84%, outperforming single human-generated reference captions, and indicating significant improvements over SOTA approaches for visual description. Code is available at this https URL
Submission history
From: David Chan [view email][v1] Thu, 2 Feb 2023 18:58:05 UTC (29,216 KB)
[v2] Thu, 16 Feb 2023 23:38:25 UTC (29,216 KB)
[v3] Thu, 19 Oct 2023 17:58:05 UTC (2,284 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.