Mathematics > Numerical Analysis
[Submitted on 30 Jan 2023 (v1), last revised 18 Jun 2024 (this version, v2)]
Title:GPU Accelerated Newton for Taylor Series Solutions of Polynomial Homotopies in Multiple Double Precision
View PDF HTML (experimental)Abstract:A polynomial homotopy is a family of polynomial systems, typically in one parameter $t$. Our problem is to compute power series expansions of the coordinates of the solutions in the parameter $t$, accurately, using multiple double arithmetic. One application of this problem is the location of the nearest singular solution in a polynomial homotopy, via the theorem of Fabry. Power series serve as input to construct Padé approximations.
Exploiting the massive parallelism of Graphics Processing Units capable of performing several trillions floating-point operations per second, the objective is to compensate for the cost overhead caused by arithmetic with power series in multiple double precision. The application of Newton's method for this problem requires the evaluation and differentiation of polynomials, followed by solving a blocked lower triangular linear system. Experimental results are obtained on NVIDIA GPUs, in particular the RTX 2080, RTX 4080, P100, V100, and A100.
Code generated by the CAMPARY software is used to obtain results in double double, quad double, and octo double precision. The programs in this study are self contained, available in a public github repository under the GPL-v3.0 License.
Submission history
From: Jan Verschelde [view email][v1] Mon, 30 Jan 2023 04:41:28 UTC (202 KB)
[v2] Tue, 18 Jun 2024 22:20:02 UTC (205 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.