Computer Science > Hardware Architecture
[Submitted on 29 Jan 2023]
Title:Accelerating Graph Analytics on a Reconfigurable Architecture with a Data-Indirect Prefetcher
View PDFAbstract:The irregular nature of memory accesses of graph workloads makes their performance poor on modern computing platforms. On manycore reconfigurable architectures (MRAs), in particular, even state-of-the-art graph prefetchers do not work well (only 3% speedup), since they are designed for traditional CPUs. This is because caches in MRAs are typically not large enough to host a large quantity of prefetched data, and many employs shared caches that such prefetchers simply do not support. This paper studies the design of a data prefetcher for an MRA called Transmuter. The prefetcher is built on top of Prodigy, the current best-performing data prefetcher for CPUs. The key design elements that adapt the prefetcher to the MRA include fused prefetcher status handling registers and a prefetch handshake protocol to support run-time reconfiguration, in addition, a redesign of the cache structure in Transmuter. An evaluation of popular graph workloads shows that synergistic integration of these architectures outperforms a baseline without prefetcher by 1.27x on average and by as much as 2.72x on some workloads.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.