Computer Science > Computers and Society
[Submitted on 17 Jan 2023]
Title:Engaging with Researchers and Raising Awareness of FAIR and Open Science through the FAIR+ Implementation Survey Tool (FAIRIST)
View PDFAbstract:Six years after the seminal paper on FAIR was published, researchers still struggle to understand how to implement FAIR. For many researchers FAIR promises long-term benefits for near-term effort, requires skills not yet acquired, and is one more thing in a long list of unfunded mandates and onerous requirements on scientists. Even for those required to or who are convinced they must make time for FAIR research practices, the preference is for just-in-time advice properly sized to the scientific artifacts and process. Because of the generality of most FAIR implementation guidance, it is difficult for a researcher to adjust the advice to their situation. Technological advances, especially in the area of artificial intelligence (AI) and machine learning (ML), complicate FAIR adoption as researchers and data stewards ponder how to make software, workflows, and models FAIR and reproducible. The FAIR+ Implementation Survey Tool (FAIRIST) mitigates the problem by integrating research requirements with research proposals in a systematic way. FAIRIST factors in new scholarly outputs such as nanopublications and notebooks, and the various research artifacts related to AI research (data, models, workflows, and benchmarks). Researchers step through a self-serve survey process and receive a table ready for use in their DMP and/or work plan while gaining awareness of the FAIR Principles and Open Science concepts. FAIRIST is a model that uses part of the proposal process as a way to do outreach, raise awareness of FAIR dimensions and considerations, while providing just-in-time assistance for competitive proposals.
Submission history
From: Christine Kirkpatrick [view email][v1] Tue, 17 Jan 2023 22:38:30 UTC (1,634 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.