Physics > Data Analysis, Statistics and Probability
[Submitted on 11 Jan 2023 (v1), last revised 22 Sep 2023 (this version, v2)]
Title:Non-linear, bivariate stochastic modelling of power-grid frequency applied to islands
View PDFAbstract:Mitigating climate change requires a transition away from fossil fuels towards renewable energy. As a result, power generation becomes more volatile and options for microgrids and islanded power-grid operation are being broadly discussed. Therefore, studying the power grids of physical islands, as a model for islanded microgrids, is of particular interest when it comes to enhancing our understanding of power-grid stability. In the present paper, we investigate the statistical properties of the power-grid frequency of three island systems: Iceland, Ireland, and the Balearic Islands. We utilise a Fokker-Planck approach to construct stochastic differential equations that describe market activities, control, and noise acting on power-grid dynamics. Using the obtained parameters we create synthetic time series of the frequency dynamics. Our main contribution is to propose two extensions of stochastic power-grid frequency models and showcase the applicability of these new models to non-Gaussian statistics, as encountered in islands.
Submission history
From: Ulrich Oberhofer [view email][v1] Wed, 11 Jan 2023 16:27:11 UTC (2,446 KB)
[v2] Fri, 22 Sep 2023 11:44:06 UTC (2,446 KB)
Current browse context:
physics.data-an
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.