Electrical Engineering and Systems Science > Systems and Control
[Submitted on 22 Dec 2022]
Title:Bayesian Physics-Informed Neural Networks for Robust System Identification of Power Systems
View PDFAbstract:This paper introduces for the first time, to the best of our knowledge, the Bayesian Physics-Informed Neural Networks for applications in power systems. Bayesian Physics-Informed Neural Networks (BPINNs) combine the advantages of Physics-Informed Neural Networks (PINNs), being robust to noise and missing data, with Bayesian modeling, delivering a confidence measure for their output. Such a confidence measure can be very valuable for the operation of safety critical systems, such as power systems, as it offers a degree of trustworthiness for the neural network output. This paper applies the BPINNs for robust identification of the system inertia and damping, using a single machine infinite bus system as the guiding example. The goal of this paper is to introduce the concept and explore the strengths and weaknesses of BPINNs compared to existing methods. We compare BPINNs with the PINNs and the recently popular method for system identification, SINDy. We find that BPINNs and PINNs are robust against all noise levels, delivering estimates of the system inertia and damping with significantly lower error compared to SINDy, especially as the noise levels increases.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.