Computer Science > Computers and Society
[Submitted on 9 Dec 2022]
Title:Automatically Generating CS Learning Materials with Large Language Models
View PDFAbstract:Recent breakthroughs in Large Language Models (LLMs), such as GPT-3 and Codex, now enable software developers to generate code based on a natural language prompt. Within computer science education, researchers are exploring the potential for LLMs to generate code explanations and programming assignments using carefully crafted prompts. These advances may enable students to interact with code in new ways while helping instructors scale their learning materials. However, LLMs also introduce new implications for academic integrity, curriculum design, and software engineering careers. This workshop will demonstrate the capabilities of LLMs to help attendees evaluate whether and how LLMs might be integrated into their pedagogy and research. We will also engage attendees in brainstorming to consider how LLMs will impact our field.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.