Computer Science > Computer Vision and Pattern Recognition
[Submitted on 29 Nov 2022]
Title:Isolation and Impartial Aggregation: A Paradigm of Incremental Learning without Interference
View PDFAbstract:This paper focuses on the prevalent performance imbalance in the stages of incremental learning. To avoid obvious stage learning bottlenecks, we propose a brand-new stage-isolation based incremental learning framework, which leverages a series of stage-isolated classifiers to perform the learning task of each stage without the interference of others. To be concrete, to aggregate multiple stage classifiers as a uniform one impartially, we first introduce a temperature-controlled energy metric for indicating the confidence score levels of the stage classifiers. We then propose an anchor-based energy self-normalization strategy to ensure the stage classifiers work at the same energy level. Finally, we design a voting-based inference augmentation strategy for robust inference. The proposed method is rehearsal free and can work for almost all continual learning scenarios. We evaluate the proposed method on four large benchmarks. Extensive results demonstrate the superiority of the proposed method in setting up new state-of-the-art overall performance. \emph{Code is available at} \url{this https URL}.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.